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Abstract. We compute and classify all Einstein spaces and their corresponding coordinate 
systems such that the Hamilton-Jacobi equation admits a separation of variables with two 
ignorable and one essential null coordinates. We find that all such spaces correspond to 
plane-fronted gravitational waves of Petrov type N. We also give necessary conditions 
which a general space-time must have in order to admit coordinates of the type studied. 
Furthermore, the integrability conditions for Helmholtz (Schrodinger) separability are 
completely solved. 

1. Introduction 

This is the first of a series of papers devoted to the classification of separable coordinate 
systems for four-dimensional Einstein spaces and the classification of the corresponding 
Einstein spaces. We shall pay particular attention to Einstein spaces with the Lorent- 
zian signature ( + + + -)  used in general relativity. The utility in general relativity of 
finding coordinates which separate the Hamilton-Jacobi equation is two fold. First, one 
can possibly find new space-times which, for example, satisfy the vacuum Einstein 
equations; second, even if the space-time is known the complete integrals of the 
Hamilton-Jacobi equation allow one to integrate the geodesic equations and thus study 
global properties of the spaces. Both of these possibilities were first realised by Carter 
(1968a, b). Since that time there has been much work on finding separable coordinates 
in general relativity, but any kind of classification has been lacking. We refer the reader 
to the recent review article of Benenti and Francaviglia (1980) for a comprehensive 
discussion of separability as applied to general relativity along with a fairly comprehen- 
sive bibliography. For the treatment of separability of the partial differential equations 
of mathematical physics and its connection with Lie theory the reader is referred to the 
book of Miller (1977). 

In Boyer et a1 (1978) the authors gave a classification of canonical forms for the 
separability of the Hamilton-Jacobi equation in four-dimensional complex Rieman- 
nian spaces based on the number of ignorable and essential null coordinates. We also 
gave necessary and sufficient conditions for the separation of the corresponding 
Helmholtz (or Schrodinger) equation. In this paper we concentrate on type D separable 
coordinates in Boyer et a1 (1978), that is, those with two ignorable and one essential null 
coordinates. These coordinates arise in space-times describing gravitational waves. In 
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fact, we shall show that the only vacuum Einstein spaces which admit such coordinates 
are the plane-fronted parallel waves (pp waves) (Pirani 1957, Bondi et a1 1959, 
Plebariski 1979, Kundt 1961). Some partial results concerning separation in such 
space-times have been obtained previously (Matravers 1976, Collinson and Fugere 

Another interesting mathematical problem which arises is that of a local obstruction 
theory. The simplest example of this is the celebrated fundamental theorem: A 
pseudo-Riemannian manifold admits a Cartesian coordinate chart if and only if its 
curvature tensor vanishes. Here we prove that necessary conditions that a four- 
dimensional pseudo-Riemannian manifold admits a coordinate chart of type D are that 
it has a geodesic principal null direction and a complementary foliation of codimension 
one with totally geodesic leaves. In terms of the physical optical parameters, this means 
that the principal null direction is geodesic shearfree, twistfree and non-expanding. 
These necessary conditions can be formulated in terms of the vanishing of certain 
Spencer cohomology groups, but a clear picture of this obstruction theory in a general 
setting has yet to emerge. 

Finally we mention that ours is the first work where a complete classification of 
Einstein spaces admitting a specific type of separation of variables is given. For more 
details of the computations involved the reader is referred to Boyer et a1 (1979). 

1977). 

2. Separation of variables 

In Boyer et a1 (1978) the authors gave a classification of separable coordinate systems 
for the Hamilton-Jacobi equation 

g””(X)S,.Sx” = E  (2.1) 

in complex Riemannian spaces. We also gave necessary and sufficient conditions which 
enable separation of the Helmholtz equation 

A4CD E@ (2.2a) 

where A4 is the Laplace-Beltrami operator 

4 
1/2 Ir 

A 4 =  1g1-1’2ax*(lg/ g ”a,”). 
i , j=1  

(2.2b) 

Our classification is based on the number of ignorable coordinates. If { x }  is a 
separable coordinate system with X I  an essential (non-ignorable) coordinate we dis- 
tinguish two types: An essential variable X I  is said to be of type 1 if the separated 
ordinary differential equation is linear in Sxi and type 2 if it is quadratic in Sxl. We call X I  

a null coordinate if g(dx’ ,  dx ’ )  = 0. Then it is easy to see that an essential coordinate x ’  is 
null if and only if it is of type 1. 

Of the four-dimensional complex Riemannian spaces admitting a coordinate system 
with (2.1) separable, there are three with two ignorable coordinates-types C, D and E 
in Boyer et a1 (1978) having, respectively, 0, 1 and 2 essential null coordinates. Thus 
type E having two null coordinates is only possible for real spaces with signature 
(+ + - -). Type C for real spaces with Lorentzian signature ( + + + -)  includes the class 
investigated by Carter (1968b). 
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In this article we shall study type D coordinates in detail; in particular, we classify all 
Einstein spaces with Lorentzian signature. We shall treat the more general R- 
separation in forthcoming publications. 

Actually as discussed previously (Boyer et a1 1978, Kalnins and Miller 1979) it is not 
a separable coordinate system which interests us but an equivalence class of separable 
coordinates. We say that two separable coordinate systems {xi} and {x"} are equivalent 
if they are related by the pseudogroup P of coordinate transformations defined by 

where X I  are essential and x a  (x') are ignorable coordinates, Xi, fff are arbitrary 
analytic functions of the variable xi, and A;  is a matrix of real (complex) numbers with 
det A;  # 0, i.e. A E GL(k ) where k is the number of ignorable coordinates. 

One problem that arises is that a separable coordinate system with k ignorable 
coordinates can be equivalent to a separable system with greater than k ignorable 
coordinates (Benenti and Francaviglia lqBf3). We shall always consider the maximal 
number of ignorable coordinates as those which characterise the system. An explicit 
example of this phenomenon will be given shortly. Often by abuse of language, we shall 
refer to an equivalence class of separable coordinate systems as a separable coordinate 
system. 

We now specialise to the case of four real (or complex) dimensions. In particular we 
are interested in the real case with the Lorentzian signature (+++-). In our 
classification (Boyer et a1 1978) in four dimensions the separable systems with two 
ignorable and one essential null coordinates fell into two subcases with the following 
contravariant metrics 

i l  0 0 o \  

/ l  0 0 o \  

where the subscripts i = 1, 2 indicate an arbitrary function depending only on the 
variable x i .  

However, Lemma 1. Every D2 coordinate system is equivalent to a D 1  coordinate 
system. 

We thus need only consider metrics of type D 1  which we shall refer to as D. It is 
convenient at this point to introduce some new notation: 
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Then the covariant metric takes the form 

ds2=A~2[(dx1)2+q52h(dx2)2+2q52h, dx2dxa+q5'hap dx* dx']. (2.5) 

In order to have the correct signature (+ + + -)  we must require that K1- KZ > 0 

The Killing tensors which describe systems of type D are easily found to be 
and aiel  + bidl - 2a2bz > 0. 

L~ = a x 4  L~ = ax3 

L~ = ( K ~  - ~ Z ) - ~ [ 2 ~ l ( a 2 a ~ 2 ~ 3  + bzaX2X4 + f ~ a , ~ , ~ )  (2.6) 

+Kz(axixi + dlaX3X3 + 2fla,3,4+ elax4x4)]. 

Lemma 2. If bZ (or equivalently az)  vanishes, then a D metric is equivalent to a 
metric of the form 

ds2 = (K1-K2)[(dx')2+(f~/el-dl)(dxz)z+2 dx2 dx3-2(fl/el) dxz dx4+e;'(dx4)']. 

coordinates (class B in Boyer et a1 (1978)). 
Thus if K; = 0, a D metric with b2 = 0 is equivalent to a metric with three ignorable 

The purpose of this article is to prove the following. 

Theorem 1, Let (M, g) be a non-flat Einstein space which admits a separable coordinate 
system { x  '} with strictly two ignorable coordinates and one null essential coordinate 
(type D in Boyer et a1 (1978)). Then (M, g) with the coordinates { x ' }  is up to 
equivalence determined by one of the following metrics. 

(i) ds2 = A-2[(dx1)2+ ( X ' ) ~ ( ~ X ~ ) ) '  

- ( a 0 ( ~ ~ ) ~ + ~ ~ I n x ~ ) ( d x ~ ) ~ + 2 d x ~ d ~ ~ + 2 ~  dx2dx4]. 

(ii) ds2 =A-2[(dx1)2+(dx4)2(~1)2(d~z)+2 dx2 dx3+22(a~x'+ao)  dx2 dx4] 

where 

W > O  

W C O  

w = E -ao  for case (i) and w = aa: *$for case (ii), a1, a. are arbitrary constants (al # 0 
in (i)) and E = 0, 1. 

(iii) ds2 = A-'{(dx ')' + q5 '(dx4)' + 2 dx2 dx 

1/2 2 

1/2 2 A =  coshAIwl x (7 W = O  

- [ G Y ~ ( X ' ) ~  + aoxl -q52~(~1)z -~z /4q52] (d~2)2  - 4 ' ~ '  dxz dx4} 

where 4 is an arbitrary function of x 2  and A is determined by 

2A" + (24' - a1 - q5"/q5)A = 0. 

(iv) dsz = A ~ z [ ( d ~ 1 ) 2 + ~ 2 ( d ~ 4 ) 2 - ( a ~ ( ~ 1 ) 2 -  1/4q52)(dx2)z+2 dx2 dx3] 

with q5 again an arbitrary function of x 2  and 

2A"- (a1 + 4" /4)A = 0. 

(In (iii) and (iv) cyo, cy1 and /3 are arbitrary constants.) 
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Corollary. Let (M, g )  be as in theorem 1; then: 
(i) The space has Petrov type N. 

(ii) The totally geodesic surfaces x = constant have parallel normal direction. 
(iii) The local holonomy group is at most two dimensional. 

The method we use to prove this theorem is that of moving frames of E CartBn (for 
our notation see Plebanskii (1964), Boyer et a1 1980)). We give the Cartln structure 
equations written in spinor form (summation convention is used) 

doAA + w A B  A oBA + w A h  A O A B  = 0 

dw B + w  C A W  B=-C BCDS 
A A C A CD (2.7) 

+&RSA~+CAB6fiScD 

where O A A  is a spinor moving coframe and uAB (wAB) is the connection l-form with 
respect to this coframe. C A B C D  and CABefi are the spinor components of the Weyl 
tensor and traceless Ricci tensor, respectively. R is the scalar curvature, SAB and SAB 
are 2-forms defined by 

where &AB  EA^) is antisymmetric and equal to 1 for A = 1, B = 2. 
If we now reduce the spinor group SL(2, C) to the subgroup which stabilises a 

principal null direction, say 0" in coframe form, then the quantity T = W ' ~  is an 
invariant of the reduced principal bundle. With this in mind a convenient choice of 
coframe is 

(2.9) 
1 1  1 0 =-dx 

A 

where h a  = (a', b2). It is easy to check that 8'2 is indeed a principal null direction. 
Moreover, from (2.7), a straightforward computation gives 

T = -2-3 /2(2~, ,  + i 7 7 ~ 4 ) ~ 2 i  (2.10) 

where 77 = azbk - bzak. Now the l-form 0'2 defines a foliation of the space into three- 
dimensional (null) surfaces. Furthermore, using the dT  equation of (2.7), we have the 
following theorem. 

Theorem 2. In order that (M, g) admit a coordinate system of type D, it must have: 

every leaf L, of the foliation defined by x' = constant is a totally geodesic surface, 
(i) a non-expanding, twistfree, shearfree, geodesic principal null direction, thus 

(ii) an algebraically degenerate conformal curvature. 

3. Proof of the main theorem 

As a first step toward proving theorem 1, we prove a lemma which is of interest in its 
own right. 
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Lemma 3. Let (M, g) admit a coordinate system of type D (i.e. the Hamilton-Jacobi 
equation (2.1) is separable); then the Helmholtz equation (2.2) is separable in (M, g) if 
and only if there are constants ai, i = 1, . . . , 12, such that up to equivalence one of the 
following holds: 

( 1 )  K i K ;  # O  a262 Z 0 5 = a ~ I b 2  e l = a 1 f l + a 2 d l + a g  

Proof. As the proof involves some straightforward but rather tedious computation, we 
give the outline only. In Boyer et a1 (1978) it was shown that a necessary and sufficient 
condition for Helmholtz separability is 

R - 3  
12 - 4 a X i x z  ln[(K1- K2)’/51/1= 0. 

This condition implies the existence of functions Ai(xi), i =  1, 2 ,  such that (K1- 
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K 2 ) 2 / A l h 2  = Q. If we define = A 'I2a2, J2 = A 'I2b2,  then we have 

(K:  - 2 K l K z + K ; ) / A 1 =  2a"2&(fl+ f2)-a";el--b";dl. 

Assuming K l  # 0 define the operator L =: Kl-' a x 2 .  Then the integrability condition for 
the above equation is 

L3(2Z2 l2 f i  -eici;  -dib":)=O 

and this equation has the general form 

A 1A2 -BIB2 - C1 C2 = 0 

where Ai, Bi, Ci are functions of x i  only. Assuming that none of these functions vanish 
this equation has two solutions: (i) A2, Bz,  C2 are proportional and A1, B1, C1 are 
linearly dependent and (ii) the same with 1 and 2 interchanged. Analysis of case (i) 
leads to coordinates of type (l), whereas case (ii) leads to K ;  = 0. The degenerate cases 
where one or more of the Ai, Bi, Ci vanish also leads to K i = 0. Analysing these cases 
leads to coordinates of type ( 2 )  and (3). Similarly, the case K ;  = 0 gives coordinates of 
type (4) and (5). 

To proceed further we analyse the first two components of the second structure 
equations. This gives all except the component C22ii of the traceless Ricci tensor. We 
find that Cllii  and Cllii  are identically zero and 

(3 .1 )  

where 7 = a2bl - b 2 a l ,  H = h"(h,),z and ll = ( h u ) x l ~ U P h p .  The scalar curvature can be 
written as (using C12ii = Cl132 = 0 )  

(3 .2 )  R =4[3(A,1)2-4( ln  q5)x1Ax1A - sq  3 2 2  4 A']. 

The last component of the second structure equation is the messiest, so it will be 
convenient first to solve the equations that we have. In fact we shall prove lemma 4. 

Lemma 4.  Let (M, g )  be an Einstein space which admits a coordinate system of type D; 
then it must be either type ( 3 )  or ( 5 b )  of lemma 3 .  

To prove this lemma it is convenient to convert this to an algebraic problem by using 
the modern theory of systems of partial differential equations (see, for example, 
Pommaret 1978), so we shall very briefly discuss this language. Given a local coor- 
dinate chart X I  on M we can consider k smooth functions y'(x ')  as the components of a 
local section of a fibre bundle 8 of fibre dimension r over M. Then one constructs 
another bundle Jk(8)-the bundle of k-jets over 8. A section of J k ( 8 )  (a k-jet of a 
section of 8)  is just given by the functions y'(x ')  and all their derivatives up to order k. 
Thus a standard coordinate chart for J k ( 8 )  is ( X I ,  y', yYl, y;,,,, . . . , yP1, , L k )  where the 
yf,, . I ,  are symmetric in the lower indices. Notice that for q > k  there is a natural 
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projection map T ;  :Jq(k?)+Jk(%) sending a q-jet onto the corresponding k-jet. Now 
any system of partial differential equations (in general nonlinear) of order k is just a 
fibred submanifold %k of Jk(k?).  In terms of coordinates such a submanifold is just given 
by equations of the form 

O T b t ,  Y a, Y P, . * ' 9 Y PI, , LJ = 0.  

To investigate the integrability conditions for such equations one considers the prolon- 
gations of %k.  That is, the first prolongation % k + l  of %k is given by adding to %k the 
equations obtained classically by taking the 'total derivative', namely 

dOT aOT a JOT a 
,+--xYL + a Y & + l I  = o  
ax a y  8Y& 

where we use the standard multi-index notation 1 = ( i l ,  . . . , i,). The rth prolongation 
% k + r  is defined inductively. The (formal) integrability conditions for the system are 
then given by the surjectivity of the maps Tk+r : % k + r  + %k for all r = 1,2 ,  . . . . 

Proof of lemma 3.1. Since all functions only depend on (xl, x 2 )  we have a two- 
dimensional base manifold with these as local coordinates. We introduce the coor- 
dinates (y',  y2,  y3)  of 8 so that the corresponding section is (y '  = A ,  y 2  = 4, y 3  = 7) .  We 
consider the system Z2 c J2(8 )  obtained from the equations 7,' = 0, R = 4Ao 
(constant), C l 1 2 2  = 0, and Cl212 = 0 where we have used the fact that in an Einstein 
space the scalar curvature is constant. After rearrangement the system 3 2  can be 
written in our new notation as 

We are interested in points of a2 with y 1 y 2  # 0. Instead of working with 92.2 directly, it 
will be convenient to consider %il) = ~ ; % 2  given explicitly by the two first-order 
equations of 3 2 .  Every solution of 3 2  must be a solution of not only %\''but of all its 
prolongations % ( l , + r ,  r = 1,2,  . . , , We shall now make the assumption yiy :  # 0 and 
show that g 2  has no such solutions. 

Now with the above assumption it is not difficult to see that (%;)+I 3 %f) = T : % ~  
and so we consider %!'I = T?%!' given explicitly by %!!') plus 

2 3  1 8 Y : ( y : ) 2 - ~ Y : ( Y 3 ) 2 ( Y 2 ) 4 + t Y : ( Y 3 ) 2 ( Y  ) y = o .  
We now continue this process to the higher prolongations, assuming without loss of 
generality by the above equation that y 3  # 0. We obtain 2i4' = ~ : % 5  given by 

9 (4) 
1 
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Every solution of 
a = y:y2/y1y:  and 
3 ';" imply 

3 1 2  922 with y y l y l  f O  must also be a solution of We define 
a straightforward computation shows that the last three equations of 

217a2-365a - 1 3 4 = 0  

49a3+329a2-86a - 4 ~ 0 .  

It is not difficult to show that these polynomials have no common roots. We conclude 
that any solution of 922 must have y l y l  = 0. 

It is now an easy matter to show that any solution of 3 2  must be of one of the two 
forms 

1 2  

1 3  y 1 = y  = A . o = O  

y: =constant # 0.  2 3  y 1 = y  = o  
The first case is easily seen to be case ( 3 )  of lemma 3,  while the second case using 

R12 = 0 gives y: = 0 and leads to case ( 5 b )  of lemma 3. This proves lemma 4 .  
To finish the proof of theorem 1 the aforementioned cases are analysed separately. 

Here we only give an outline. Analysing the final structure equation for case (5 b )  one 
sees that lemma 2 is applicable and this case is equivalent to a coordinate system with 
three ignorable coordinates. The space is Petrov type I11 with non-vanishing cosmolo- 
gical constant (Boyer et a1 1979). 

Cases ( 3 a )  and ( 3 c )  can be analysed jointly and this leads to metrics (1) and ( 2 )  of the 
theorem. For type (1) metrics the only non-vanishing curvature component is 

and the Killing tensor for this case is 

(3.4) 1 2  2 L~ = aXix1  + (ao(x  

C1 = FA4 (3.5) 

- L ~  = aX1,1 * (x a x 3 x 3  + [ ( a , ~  + 4 a X 3  -a,.] . 

+ a1 ln ~ l ) a , 3 ~ 3  - ( ~ ' ) - ~ ( ~ a , 3  - a,.) . 
For type ( 2 )  metrics the curvature is 

and the Killing tensor is 

(3.6) 1 2  1 2 

Case ( 3 b )  leads to metrics ( 3 )  and ( 4 )  of the theorem with 

for type ( 3 )  metrics and 

(3.9) 

(3.10) 

In all of the four cases, T = 0 and C' is the only non-vanishing curvature component 

1 2  
L3 = a,',' + a1(x ) a x 3 , 3  

for metrics of type (4) .  

and this gives the corollary. 
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